Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In 1T-TaS2−xSex, the charge density wave (CDW) state features a star of David lattice that expands across layers as the system becomes commensurate upon cooling. The layers can also order along the c-axis, and different stacking orders have been proposed. Using neutron scattering on powder samples, we compared the stacking order previously observed in 1T-TaS2 when the system is doped with Se. While at low temperature, a 13c layer sequence stacking was observed in TaS2; this type of ordering was not evident with doping. Doping with Se results in a metallic state in which the Mott transition is suppressed, which may be linked to the absence of layer stacking.more » « less
-
Thermoelectric coolers utilizing the Peltier effect have dominated the field of solid‐state cooling but their efficiency is hindered by material limitations. Alternative routes based on the Thomson and Nernst effects offer new possibilities. Here, we present a comprehensive investigation of the thermoelectric properties of 1T‐TiSe2, focusing on these effects around the charge density wave transition (≈200 K). The abrupt Fermi surface reconstruction associated with this transition leads to an exceptional peak in the Thomson coefficient of 450 μV K−1at 184 K, surpassing the Seebeck coefficient. Furthermore, 1T‐TiSe2exhibits a remarkably broad temperature range (170–400 K) with a Thomson coefficient exceeding 190 μV K−1, a characteristic highly desirable for the development of practical Thomson coolers with extended operational ranges. Additionally, the Nernst coefficient exhibits an unusual temperature dependence, increasing with temperature in the normal phase, which we attribute to bipolar conduction effects. The combination of solid–solid pure electronic phase transition to a semimetallic phase with bipolar transport is identified as responsible for the unusual Nernst trend and the unusually large Thomson coefficient over a broad temperature range.more » « less
-
Abstract The layer stacking order in 2D materials strongly affects functional properties and holds promise for next-generation electronic devices. In bulk, octahedral MoTe2possesses two stacking arrangements, the ferroelectric Weyl semimetal Tdphase and the higher-order topological insulator 1T′ phase. However, in thin flakes of MoTe2, it is unclear if the layer stacking follows the Td, 1T′, or an alternative stacking sequence. Here, we use atomic-resolution scanning transmission electron microscopy to directly visualize the MoTe2layer stacking. In thin flakes, we observe highly disordered stacking, with nanoscale 1T′ and Tddomains, as well as alternative stacking arrangements not found in the bulk. We attribute these findings to intrinsic confinement effects on the MoTe2stacking-dependent free energy. Our results are important for the understanding of exotic physics displayed in MoTe2flakes. More broadly, this work suggestsc-axis confinement as a method to influence layer stacking in other 2D materials.more » « less
-
Abstract Bosonic Dirac materials are testbeds for dissipationless spin-based electronics. In the quasi two-dimensional honeycomb lattice of CrX 3 (X = Cl, Br, I), Dirac magnons have been predicted at the crossing of acoustical and optical spin waves, analogous to Dirac fermions in graphene. Here we show that, distinct from CrBr 3 and CrI 3 , gapless Dirac magnons are present in bulk CrCl 3 , with inelastic neutron scattering intensity at low temperatures approaching zero at the Dirac K point. Upon warming, magnon-magnon interactions induce strong renormalization and decreased lifetimes, with a ~25% softening of the upper magnon branch intensity from 5 to 50 K, though magnon features persist well above T N . Moreover, on cooling below ~50 K, an anomalous increase in the a -axis lattice constant and a hardening of a ~26 meV phonon feature are observed, indicating magnetoelastic and spin-phonon coupling arising from an increase in the in-plane spin correlations that begins tens of Kelvin above T N .more » « less
An official website of the United States government
